Draw Square where One side of that square is Trendline

You can re-solve that easily by converting Bar (on X-axis) and Price (on Y-axis) to pixel co-ordinates and then use GfxSetCoordsMode set to 0 (instead of 1 as previously used). Try this:

// To convert from Bar (on X-axis) and Price (on Y-axis) to pixel co-ordinates
// Link: http://www.amibroker.com/kb/2009/03/30/how-to-convert-from-bar-value-to-pixel-co-ordinates/
Miny = Status( "axisminy" );
Maxy = Status( "axismaxy" );
lvb = Status( "lastvisiblebar" );
fvb = Status( "firstvisiblebar" );
pxchartleft = Status( "pxchartleft" );
pxchartwidth = Status( "pxchartwidth" );
pxchartbottom = Status( "pxchartbottom" );
pxchartheight = Status( "pxchartheight" );
function XtoPxX( bar ) { return pxchartleft + ( bar - fvb ) * pxchartwidth / ( lvb - fvb + 1 ); }
function YtoPxY( value ) { return pxchartbottom - floor( 0.5 + ( value - Miny ) * pxchartheight / ( Maxy - Miny + 1e-9 ) ); }

function RadToDeg( x ) {
	 pi = atan( 1 ) * 4;
	 return x * ( 180 / pi ); //Angle is calculated in radians, thus converting it to degrees
}

_SECTION_BEGIN( "Square off a Trendline" );
	 SetChartOptions( 1, chartShowDates );
	 
	 bi = BarIndex();
	 ChartId = Name() + GetChartId();
	 
	 //////////////////////////////////////////////////////////////
	 ///////////// Capturing co-ordinates of A and B //////////////
	 //////////////////////////////////////////////////////////////
	 LeftMsBtnJustClkd = GetCursorMouseButtons() & 8;
	 LeftMsBtnDownRlsd = GetCursorMouseButtons() & 9;
	 MsMiddleBtnClkd = GetCursorMouseButtons() & 4;
	 
	 x = GetCursorXPosition( 0 );
	 y = GetCursorYPosition( 0 );

	 CtrlPressed = GetAsyncKeyState( 17 ) < 0;
	 if( CtrlPressed ) {
		 if( LeftMsBtnJustClkd ) {
			 StaticVarSet( "Ax" + ChartId, x, 0, False );
			 StaticVarSet( "Ay" + ChartId, y, 0, False );
		 }	
		 if( LeftMsBtnDownRlsd ) {
			 StaticVarSet( "Bx" + ChartId, x, 0, False );
			 StaticVarSet( "By" + ChartId, y, 0, False );
		 }	
		 if( MsMiddleBtnClkd ) {
			 StaticVarRemove( "Ax" + ChartId );
			 StaticVarRemove( "Ay" + ChartId );
			 StaticVarRemove( "Bx" + ChartId );
			 StaticVarRemove( "By" + ChartId );
		 }
	 }
	 //////////////////////////////////////////////////////////////
	 
	 GfxSetZOrder( 0 );
	 GfxSetCoordsMode( 0 );
	 GfxSetBkMode( 1 );
	 GfxSelectFont( "Arial", 8, 400 );
	 GfxSetTextColor( colorLavender );
	 GfxSelectPen( colorBlueGrey, 1, 0 );
	 
	 _Ax = XtoPxX( Lookup( bi, StaticVarGet( "Ax" + ChartId ) ) );
	 _Ay = YtoPxY( StaticVarGet( "Ay" + ChartId ) );
	 _Bx = XtoPxX( Lookup( bi, StaticVarGet( "Bx" + ChartId ) ) );
	 _By = YtoPxY( StaticVarGet( "By" + ChartId ) );
	 
	 if( _Ax > 0 && _Bx > 0 ) {
		 // Finding co-ordinates of C and D (ABCD being a square)
		  dX = _Bx - _Ax;	 		 dY = _By - _Ay;
		 _Cx = _Bx - dY;			_Cy = _By + dx;
		 _Dx = _Ax - dY;			_Dy = _Ay + dx;
		 
		 // Drawing square ABCD
		 GfxMoveTo( _Ax, _Ay );		GfxLineTo( _Bx, _By );
		 GfxMoveTo( _Bx, _By );		GfxLineTo( _Cx, _Cy );
		 GfxMoveTo( _Ax, _Ay );		GfxLineTo( _Dx, _Dy );
		 GfxMoveTo( _Cx, _Cy );		GfxLineTo( _Dx, _Dy );		 
		 
		 // Drawing diagonals of the square ABCD
		 GfxMoveTo( _Ax, _Ay );		GfxLineTo( _Cx, _Cy );
		 GfxMoveTo( _Bx, _By );		GfxLineTo( _Dx, _Dy );
		 
		 // Finding mid-points of the sides of ABCD
		 Px = ( _Ax + _Bx ) / 2;	Py = ( _Ay + _By ) / 2;
		 Qx = ( _Bx + _Cx ) / 2;	Qy = ( _By + _Cy ) / 2;
		 Rx = ( _Cx + _Dx ) / 2;	Ry = ( _Cy + _Dy ) / 2;
		 Sx = ( _Ax + _Dx ) / 2;	Sy = ( _Ay + _Dy ) / 2;
		 
		 // Drawing a square PQRS
		 GfxMoveTo( Px, Py );		GfxLineTo( Qx, Qy );
		 GfxMoveTo( Qx, Qy );		GfxLineTo( Rx, Ry );
		 GfxMoveTo( Rx, Ry );		GfxLineTo( Sx, Sy );
		 GfxMoveTo( Sx, Sy );		GfxLineTo( Px, Py );
		 
		 // Text for co-ordinates
		 GfxTextOut( "A", _Ax, _Ay ); 	GfxTextOut( "B", _Bx, _By );	GfxTextOut( "C", _Cx, _Cy ); 	GfxTextOut( "D", _Dx, _Dy );
		 GfxTextOut( "P", Px, Py ); 	GfxTextOut( "Q", Qx, Qy ); 		GfxTextOut( "R", Rx, Ry ); 		GfxTextOut( "S", Sx, Sy );
		 
		 //////////////////////////////////////////////////////////////
		 /////////////// Proving that ABCD is a square ////////////////
		 //////////////////////////////////////////////////////////////		 
		 // Measuring length of the sides using Distance formula (in pixels)
		 AB = sqrt( dX ^ 2 + dY ^ 2 );
		 BC = sqrt( ( _Cx - _Bx ) ^ 2 + ( _Cy - _By ) ^ 2 );
		 CD = sqrt( ( _Dx - _Cx ) ^ 2 + ( _Dy - _Cy ) ^ 2 );
		 DA = sqrt( ( _Dx - _Ax ) ^ 2 + ( _Dy - _Ay ) ^ 2 );
		 
		 // Finding angle of the vertices of ABCD
		 CAD = atan( CD / DA );		CAB = atan( BC / AB );		/*Hence,*/ DAB = RadToDeg( CAD + CAB );
		 DBA = atan( DA / AB );		DBC = atan( CD / BC );		/*Hence,*/ ABC = RadToDeg( DBA + DBC );
		 ACB = atan( AB / BC );		ACD = atan( DA / CD );		/*Hence,*/ BCD = RadToDeg( ACB + ACD );
		 BDC = atan( BC / CD );		BDA = atan( AB / DA );		/*Hence,*/ CDA = RadToDeg( BDC + BDA );
		 
		 Title =
		 "Proof 1: All sides of ABCD are equal (in pixels)" +
		 StrFormat( "\nAB = %1.2f, BC = %1.2f, CD = %1.2f, DA = %1.2f", AB, BC, CD, DA ) +
		 "\nAB = BC = CD = DA = " + WriteIf( AB == BC && BC == CD && CD == DA, "True", "False" ) +
		 "\n\nProof 2: All vertices of ABCD are of 90°" +
		 StrFormat( "\nDAB = %1.0f°, ABC = %1.0f°, BCD = %1.0f°, CDA = %1.0f°", DAB, ABC, BCD, CDA ) +
		 "\nAngle A = B = C = D = " + WriteIf( DAB == ABC && ABC == BCD && BCD == CDA, "True", "False" )
		 ;
		 //////////////////////////////////////////////////////////////
	 }
	 
	 Plot( C, "Price", colorDefault, styleCandle );
	 RequestMouseMoveRefresh();
_SECTION_END();

Yes!

And scaling as Tomasz wrote about it here. Quoting him:

4 Likes